Front-like entire solutions for monostable reaction-diffusion systems

نویسندگان

  • Shi-Liang Wu
  • Haiyan Wang
چکیده

This paper is concerned with front-like entire solutions for monostable reactiondiffusion systems with cooperative and non-cooperative nonlinearities. In the cooperative case, the existence and asymptotic behavior of spatially independent solutions (SIS) are first proved. Combining a SIS and traveling fronts with different wave speeds and directions, the existence and various qualitative properties of entire solutions are then established using comparison principle. In the non-cooperative case, we introduce two auxiliary cooperative systems and establish some comparison arguments for the three systems. The existence of entire solutions is then proved via the traveling fronts and SIS of the auxiliary systems. Our results are applied to some biological and epidemiological models. To the best of our knowledge, it is the first work to study the entire solutions of non-cooperative reaction-diffusion systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone Wavefronts for Partially Degenerate Reaction-Diffusion Systems

This paper is devoted to the study of monotone wavefronts for cooperative and partially degenerate reaction-diffusion systems. The existence of monostable wavefronts is established via the vector-valued upper and lower solutions method. It turns out that the minimal wave speed of monostable wavefronts coincides with the spreading speed. The existence of bistable wavefronts is obtained by the va...

متن کامل

Uniqueness and stability properties of monostable pulsating fronts

In this paper, we prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov-Petrovsky-Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability propert...

متن کامل

Propagating interface in a monostable reaction-diffusion equation with time delay

We consider a monostable time-delayed reaction-diffusion equation arising from population dynamics models. We let a small parameter tend to zero and investigate the behavior of the solutions. We construct accurate lower barriers — by using a non standard bistable approximation of the monostable problem— and upper barriers. As a consequence, we prove the convergence to a propagating interface.

متن کامل

Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models

In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.

متن کامل

Non-local reaction-diffusion equations with a barrier

Non-local reaction-diffusion equations arise naturally to account for diffusions involving jumps rather than local diffusions related to Brownian motion. In ecology, long distance dispersal require such frameworks. In this work we study a one-dimensional non-local reaction-diffusion equation with bistable and monostable type reactions. The heterogeneity here from due to the presence of a barrie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012